咨询热线: 400-012-4001

中文

English
页面位置页面位置 : 首页 >  新闻资讯 >  西测资讯

航空器的雷击防护

发布时间:2019-10-29 阅读量: 作者:西安西测测试技术股份有限公司
    近年来,民用航空器遭遇雷击事件频频发生,而且季节性强,事故率高,极大的影响了飞行安全。目前,无论是飞行还是地面维修,都总结了许多宝贵的经验,力图将这些不安全事件发生的可能性和破坏性降到低。

    1.雷击的原理

    高空中有好多股气流在不断地运动。这些气流方向不同,速度也不相同。气流的运动使空气中的积云有的向上冲,有的向下降。云和云之间的磨擦使云带上不同种的电荷。由于同种电荷相排斥,因此正电荷或负电荷聚集到云的两端。空气流动越快、云层越厚,带的电荷就越多。积云所带的电荷达到一定程度,就会穿过空气放电,使两种电荷中和。

    2.飞机空中是如何遭遇雷击的

    雷击时,飞机充当的实际上是雷电的一段导体,雷电从其入口进入,出口出去,入口一般是雷达罩,翼尖等突出位置,出口一般在翼尖等位置,所以尖端突出的位置一般是雷击出口。正常情况下,只要飞机表面各区域导电性能良好,彼此间搭接状况理想,那么就一般不会出现结构烧毁,而飞机上的电子设备都有雷击保护功能,也是不容易损坏的。

    3.飞行中如何尽可能防止被雷击

    防雷击主要的方法还是绕过雷雨区飞行,这个主要就是依靠飞行员对雷达的使用技巧。下面就来讨论一些操作技巧,以便及早正确的发现并远离雷区。




    3.1.正确对待路径衰减修正警告(PAC ALERT):

    相互干涉的降水形成衰减区,即所谓的雷达阴影区,PAC ALERT功能就会在外面的距离圈处标出一段黄色的弧,提醒飞行员存在衰减条件。只要增益设定在CAL位置,而且飞机距离雷雨区小于80海里,PAC ALERT就处于开启状态。当与雷达波束干涉的降水很大时,雷达的衰减会很严重,导致没有足够的能量穿过天气,没能探测到背后的目标就反射回了飞机,当发生这种情况时,降雨后边的天气就被遮蔽住了,这部分被遮蔽的区域叫做雷达阴影区。

    3.2.对增益调节的使用:

    校正(CAL)是将雷达灵敏度设定在标准校正的反射水平上,这是正常操作时推荐的设定。如果需要的话,可以从CAL位顺时针旋转调高增益,增大雷达灵敏度,也可以逆时针旋转调低增益,降低雷达灵敏度。MAX增益相当于增加了约一个半颜色等级,MIN增益相当于减少了约一个半颜色等级。

    3.3.人工俯仰调节:

    首先推荐使用自动位方式,在自动位,雷达天线俯仰自动控制。人工俯仰调节每个人的操作习惯以及不同的雷达系统都有稍许差异,下面是COLLINS雷达使用手册对于人工位俯仰控制的操作建议。

    ―爬升俯仰设定:俯仰设定为7°就使得雷达扫描方向沿着飞行航迹,可以防止飞机穿越雷暴,同时还可消除地面杂波。

    ―下降俯仰设定:飞机下降到10.000英尺以下时,如果机组很忙碌,则+5°的俯仰设定是佳的折衷。但是,这样也有可能飞入在航迹下面生成并处在雷达波束以下的雷暴。所以,另一种10.000英尺以下的备用俯仰设定方法是,先设定为+2 °,然后随着飞机的不断下降逐步提高到+5°,这样可以消除大部分地面杂波,并防止来自航迹下的雷暴威胁。

    ―低空俯仰设定(10,000英尺以下):在10.000英尺高度以下时,推荐俯仰设定在+2 °至+7°之间,+5°是一个很好的折衷选择。

    ―中空俯仰设定(10,000,25,000英尺):一般原则是将俯仰设定在使少量的地面回波显示在屏幕外缘上。

    ―高空俯仰设定(25,000英尺以上):在陆地上空飞行,160海里范围内时,调整俯仰,使外距离圈处出现一些地面杂波,保持这种状态就能保证天线总是指向雷暴的反射部分。

    3.4.显示距离的选择:

    雷达波束在距离飞机80海里的范围内能量相当集中,对于80海里以外区域,由于波束有了较大的发散,因此雷达应主要用于对大局天气的准备及规避。另外,由于波束衰减的原因,两个完全相同的雷雨,距离近的比距离远的雷雨显示的强度要大,现在大多数飞机雷达使用了STC技术,就可以对衰减进行补偿,从而对远距离目标进行精确的观测和显示。这样,距离飞机80海里以内的目标可以被精确地显示(精确的颜色级),同时目标的强度不会随着离飞机距离的缩小而增大。灵敏度时间控制(STC)主要用于距飞机80海里内的波束衰减补偿,因此,推荐对天气目标的评估应在距离飞机80海里以内,对于80海里以外,雷达的主要作用应是参考性的天气分析。

    4.维修人员的地面检查:

    雷击一般在两处地方造成损伤,第一处就是雷击点,第二处则是释放电流的地方。

    4.1.常见的雷击点:

    4.1.1.雷击或电流释放往往发生在后缘襟翼和下后机身部位。天线、水平安定面、垂直安定面、机翼的后边缘也是易被雷击损伤的部位。

    4.1.2.在金属结构上,雷击一般会造成烧蚀的小圆孔。这些小圆孔可能聚集在一起也可能独立存在于一个较大的区域内。蒙皮褪色或被烧过的痕迹也是曾经受到雷击的表现。

    4.1.3.在复合结构上,表漆掉色是损伤的表现。也可能表现为烧蚀、穿孔、分层。在复合结构上有一些损伤是看不到的。这些损伤可以扩展到那些可见的损伤部位。火弧和烧伤痕迹也可能发生在支撑结构的连接部位。

    4.1.4.飞机外表一般首先受到损伤。比如雷达罩、发动机、大翼尖端、安定面尖端、升降舵、前缘缝翼尾部、后缘襟翼的整流锥、外部灯组件等等。另外一些伸出机身的部件也是易受损伤的部位,比如起落架、污水排放口和皮托管等。

    4.1.5.雷击可以引起电源系统和外部灯光导线故障。尽管电源系统在设计上是抗雷击的,不过一些严重的雷击还是可以对其造成严重破坏、

    4.1.6.雷击经常伴随着静电的释放,那么检查放电刷的同时也要检查机体表面。

    4.2.雷击后的应对措施:

    4.2.1.首先应当确认是否真的遭遇雷击。飞机落地后,地面维修人员应和飞行人员充分沟通以了解飞机是否飞经雷雨区,这是维护人员判明飞机是否遭受雷击的重要手段。

    4.2.2.查找雷击点,重点检查相关区域。如果判明飞机已遭受雷击,参照相应手册,对相应的无线电导航系统进行测试检查,然后再根据结构修理手册对发现的雷击损伤部位进行修复和处理。

    4.2.3.对飞机结构的搭接点(搭地线)进行检查测量,确保连接可靠,防患于未然。理想

    状况下,整个飞机结构应是一个大的等势体,如果某些搭接处接地不可靠,在有大电流经过时,会与其他结构处形成电势差,这种地方显然更容易在雷击时受到冲击损伤。大多数搭接是通过机身上的铆钉或螺钉实现的,另外一些搭接依靠材料类型、结合紧密度、物理结构等来实现。

陕公网安备 61019002002319号